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Introduction

 High dimensional data (HDD) refers to a situation when the number of
predictor variables (p) is much larger than the sample size (n),

p >> n.

 Ex. of HDD, in gene analyses, millions of genes are measured for a single
individual, tens of thousands of gene expressions values available in tumor
classification using genome data, an image analysis contains thousands of
resolution images in pixels with a small number of samples and many more.



Introduction

 The detection of high leverage points is very crucial, for example in a
microarray data analysis to spot a malignant tumor in an MRI scan (Phillip and
Foss, 2008), , and in classifying fraud detection in credit card transactions
(Porwel and Mukund, 2018).

 Challenge in analyzing HDD, matrix related to some algorithm may become
singular.

 The existing classical method based on the Mahalanobis distance is not
applicable in HDD since the covariance matrix is not invertible.



Introduction

 Not many works have focused on detecting HLPs for HDD. Dhnn, Rana and Midi
(2015, Journal of Applied Stat.), Rana, Dhhan and Midi (2018, Econ.Comput,
Cybern Studies), Rashid, Midi and Dhhan (2022, Journal of Applied Stat.)
developed methods based on Support Vector Regression.

 Hubert et al. (2005) proposed the use of the Robust Principal Component
Analysis (ROBPCA) to diagnose bad and good leverage points in HDD. However,
we discovered that the ROBPCA procedure does not perform well for outliers
less than 30%.



Introduction

 Boudt et al. (2018) developed the Minimum Regularized Covariance Determinant
(MRCD) technique to obtain mean and covariance matrix for HDD and used it to
compute RMD to detect outliers (hereinafter referred to as HLPs)

 The method is very successful for the detection of HLPs in HDD sparse data.
Nevertheless, our investigation shows that the performance of the RMD-MRCD fail to
correctly detect HLPs when the dimension is more than 700.

 Zahariah and Habshah (2023, Journal of Appl Statistics) developed MRCD-PCA
diagnostic method of detecting HLPs. The MRCD-PCA is very successful in the
detection of HLPs with small swamping effect. The only shortcoming of this method is
that its algorithm is quite cumbersome and takes longer computational running times.

 Thus, it is very important to establish an alternative reliable method of identification of
HLPs in HDD by integrating MRCD in its establishment.



Objectives

 To develop a reliable method of identification of HLPs in HDD, denoted as
IRPCA.

 To show that the developed method is more reliable than the existing MRCD-
PCA & ROBPCA.

 To apply the methods to real data.



MINIMUM REGULARIZED COVARIANCE DETERMINANT 
(MRCD)

 Constraint in the MCD system to be applied to HDD. For the MCD, p must
satisfy p < h for any h-subset to obtain a non-singular covariance matrix.

 An improvement to the MCD is needed to make it work for HDD. Boudt et al.
(2018) formulated a new modification of the MCD, the so-called Minimum
Regularized Covariance Determinant (MRCD).



MINIMUM REGULARIZED COVARIANCE DETERMINANT 
(MRCD)

 The fundamental objective of the MRCD is to substitute a regularized
covariance estimate for the MCD subset-based covariance. H-subset of MRCD
that minimizes the determinant of regularized covariance of MRCD, K(H) is as
shown below,

where K (H) represents a regularized covariance matrix in MRCD.
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ROBUST PRINCIPAL COMPONENT ANALYSIS (ROBPCA)

 The combination of Projection Pursuit and PCA are used to project and reduce
the dimension of high dimensional data into the low dimensional data set.

 Robust covariance estimator based on MCD is then applied to this low
dimensional data set.

 Two distances used in the ROBPCA approach to determine outliers in PCA:
robust score distance (SD) and orthogonal distance (OD). The cut-off points are
employed based on the assumption that the scores are normally distributed.



ROBUST PRINCIPAL COMPONENT ANALYSIS (ROBPCA)

 The cut-off point for SD is χ𝐴,0.975
2 with the assumption that the PC scores are

normally distributed, and the cut-off point for OD is ( µ𝑚𝑐𝑑 +  σ𝑚𝑐𝑑𝑧0.975)
3/2 ,

where 𝑧0.975 is the 97.5% quantile of the Gaussian distribution.



MINIMUM REGULARIZED COVARIANCE DETERMINANT-
PRINCIPAL COMPONENT ANALYSIS (MRCD-PCA)

 The method is the combination of MRCD and PCA.

 The high dimensional data is reduced into low dimension using PCA, to
obtain the principal components.

 From the low dimension data, it will be reconstructed to get back the
original dimension by obtaining the fitted 𝑥 ̂ .



MINIMUM REGULARIZED COVARIANCE DETERMINANT-
PRINCIPAL COMPONENT ANALYSIS (MRCD-PCA)

 The MRCD method was performed on the fitted 𝑥 ̂ to determine the
robust mean and robust covariance of HDD.

 The distance of each observation is computed by employing Robust
Mahalanobis Distance (RMD) based on MRCD-PCA robust estimators.

 Since the distribution of MRCD-PCA is intractable, following Habshah et
al.(2009, J of Applied Stat), Dhnn, Rana and Midi (2015, Journal of Applied
Stat.), Rana, Dhhan and Midi (2018, Econ.Comput, Cybern Studies), Rashid,
Midi and Dhhan (2022, Journal of Applied Stat.) confident bound type of cut-
off points is used to identify HLPs.



THE PROPOSED IMPROVISED ROBUST PRINCIPAL 
COMPONENT ANALYSIS (IRPCA)

Step 1: For each observation 𝑥𝑖𝑗 , compute the centered data matrix X by

subtracting the median of each column.
𝑥𝑖𝑗 −𝑚𝑒𝑑𝑖𝑎𝑛 (𝑥𝑗)

Step 2: Apply Principal Component Analysis (PCA) to the centered data to reduce

the number of original p variables into k dimensional subspace where

k << p. The number of dimensions k retained is based on the Scree plot

or Cumulative Variance in which the first k loadings >> 80% (Ciao, 2006).



THE PROPOSED IMPROVISED ROBUST PRINCIPAL 
COMPONENT ANALYSIS (IRPCA)

Step 3: Project the data points on the k-dimensional subspace and obtain the

principal component score where the score are the entries of n × k matrix

Tn,k = (Xn,p - 1n  µ′)Pp,k

where Pp,k consists of the first k columns of Pp,p and  µ′is the mean
centered data matrix.

Step 4: Estimate the robust scatter matrix of the principal component score
within k-dimensional subspace using the MRCD estimator. The robust
estimated mean and the covariance matrix are indicated as  𝜇𝐼𝑅𝑃𝐶𝐴 and
∑𝐼𝑅𝑃𝐶𝐴, respectively.



THE PROPOSED IMPROVISED ROBUST PRINCIPAL 
COMPONENT ANALYSIS (IRPCA)

Step 5: Calculate Robust Mahalanobis Distance (RMD) for each observation based

on the robust estimated mean and the covariance matrix of IRPCA.

𝑅𝑀𝐷𝑖(𝐼𝑅𝑃𝐶𝐴) = (𝑥𝑖 −  𝜇𝐼𝑅𝑃𝐶𝐴)
𝑇𝛴𝐼𝑅𝑃𝐶𝐴

−1 (𝑥𝑖 −  𝜇𝐼𝑅𝑃𝐶𝐴)



THE PROPOSED IMPROVISED ROBUST PRINCIPAL 
COMPONENT ANALYSIS (IRPCA)

Step 6: Following Habshah et al.(2009, J of Applied Stat), Dhnn, Rana and Midi
(2015, Journal of Applied Stat.), Rana, Dhhan and Midi (2018, Econ.Comput,
Cybern Studies), Rashid, Midi and Dhhan (2022, Journal of Applied Stat.)

the cutt-off point for 𝑅𝑀𝐷𝐼𝑅𝑃𝐶𝐴 is given by,

𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝑀𝐷𝐼𝑅𝑃𝐶𝐴) + 3𝑀𝐴𝐷(𝑅𝑀𝐷𝐼𝑅𝑃𝐶𝐴)

where 𝑀𝐴𝐷 𝑅𝑀𝐷𝐼𝑅𝑃𝐶𝐴 =
𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑀𝐷𝐼𝑅𝑃𝐶𝐴−𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝑀𝐷𝐼𝑅𝑃𝐶𝐴)

0.6745

for i = 1, 2, 3,…., n.

Any observations that exceeds the cut-off point are declared as HLPs.



MONTE CARLO SIMULATION

 We conducted a simulation study similar to that of Boudt et al.’s (2018),
Agostenelli et al. (2015), Hubert et al. (2005), Maronna and Zamar (2002) and
Zahariah and Habshah (2022) simulation designs, to show the merit of our
proposed method. Boudtt et al. (2018) only considered one size of HDD
matrices (200 x 400). However, in our simulation study, we generated two
different sample sizes of n = 50 and n =100 with four different dimensions of
data set, = 100, 200, 300, and 500 throughout 500 simulations.



MONTE CARLO SIMULATION

 Since the MRCD estimators are location and scale equivariant, following
Agostenelli et al. (2015), we assume without loss of generality the mean µ=0
and the variances in diagonal elements of ∑ are all equal to 1 where ∑ is a
correlation matrix.

 A clean observation was generated from 𝑥𝑖~𝑁𝑝 0, 𝐼 for i = 1,2,3,..,n-m. To
contaminate the data set with HLPs, we generate data similar to Maronna and
Zamar’s (2002). We determined the smallest eigenvalue along the eigenvector
direction of ∑ and denoted it as 𝑎0 . This is the direction where the
contamination is the hardest to detect.



MONTE CARLO SIMULATION

 For the contamination model, we generated for I > n – m,
where .Following Boudt et al. (2018), we set the distance between the
outliers and clean data, k = 50. Since we wanted to identify the HLPs, we
considered four different contamination levels, at 5%,10%, 20%, and 30%.

 Boudt et al. (2018), in their simulation study, considered contamination levels
of 20% and 40%. They evaluated their results using the mean squared error
(MSE) of the scatter estimates, demonstrating that their method provides more
efficient scatter estimates compared to the Orthogonalized Gnanadesikan-
Kettenring (OGK) method. However, their study did not focus on identifying
HLPs.
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Table 1: Percentage of correct detection of HLP, masking & swamping by MRCD-PCA, IRPCA & ROBPCA FOR 
n=50

Contamination 

(%)
p

% of correct detection % of masking % of swamping

MRCD-

PCA
IRPCA ROBPCA

MRCD-

PCA
IRPCA ROBPCA MRCD-

PCA

IRPCA ROBPCA

5

(3 outliers)

100 100 100 100 0 0 0 0.812 0.916 7.372

200 100 100 100 0 0 0 0.900 0.912 7.848

300 100 100 100 0 0 0 0.976 1.068 7.776

500 100 100 100 0 0 0 1.200 1.020 8.428

10

(5 outliers)

100 100 100 100 0 0 0 0.464 0.636 5.784

200 100 100 100 0 0 0 0.436 0.608 6.684

300 100 100 100 0 0 0 0.472 0.652 7.228

500 100 100 100 0 0 0 0.340 0.736 7.608

20

(10 outliers)

100 100 100 100 0 0 0 0.136 0.164 2.292

200 100 100 100 0 0 0 0.176 0.180 3.508

300 100 100 100 0 0 0 0.164 0.232 4.504

500 100 100 100 0 0 0 0.168 0.248 5.832

30

(15 outliers)

100 100 100 100 0 0 0 0.020 0.024 0.056

200 100 100 100 0 0 0 0.044 0.020 0.172

300 100 100 100 0 0 0 0.032 0.028 0.064

500 100 100 100 0 0 0 0.036 0.024 0.256



Table 2: Percentage of correct detection of HLP, masking & swamping by MRCD-PCA, IRPCA & ROBPCA FOR 
n=100

Contamination

(%)
p

% of correct detection % of masking % of swamping

MRCD-

PCA
IRPCA ROBPCA

MRCD-

PCA
IRPCA ROBPCA

MRCD-

PCA
IRPCA ROBPCA

5

(5 outliers)

100 100 100 100 0 0 0 0.522 0.528 5.866

200 100 100 100 0 0 0 0.496 0.544 6.618

300 99.92 100 100 0.08 0 0 0.642 0.550 7.046

500 99.2 100 100 0.8 0 0 0.620 0.564 7.326

10

(10 outliers)

100 100 100 100 0 0 0 0.122 0.276 4.378

200 100 100 100 0 0 0 0.182 0.250 5.090

300 100 100 100 0 0 0 0.160 0.182 5.636

500 100 100 100 0 0 0 0.156 0.160 6.290

20

(20 outliers)

100 100 100 100 0 0 0 0.040 0.044 1.470

200 100 100 100 0 0 0 0.028 0.038 2.238

300 100 100 100 0 0 0 0.018 0.028 3.042

500 100 100 100 0 0 0 0.028 0.034 4.550

30

(30 outliers)

100 100 100 100 0 0 0 0.004 0 0.014

200 100 100 100 0 0 0 0 0 0.004

300 100 100 100 0 0 0 0.004 0 0.024

500 100 100 100 0 0 0 0.002 0.002 0.030



Table 3: Running time  (in seconds) by MRCD-PCA, IRPCA & ROBPCA for n=50

Contamination 

(%)
p

Running time (in seconds)

MRCD-PCA IRPCA ROBPCA

5

100 1.23140 0.06425 0.089023

200 4.23890 0.18848 0.21462

300 10.31759 0.42762 0.51335

500 31.09337 1.65628 1.60271

10

100 1.0386 0.0772 0.1073

200 4.1551 0.2022 0.2249

300 8.5156 0.3968 0.4958

500 28.5395 1.5013 1.6135

20

100 1.0403 0.0658 0.1120

200 4.1246 0.1686 0.1700

300 9.0696 0.4470 0.3943

500 26.3369 1.8042 1.8442

30

100 1.0104 0.0631 0.0808

200 3.2407 0.1691 0.1634

300 8.6417 0.4580 0.5107

500 27.3748 1.5426 1.9333



Table 4: Running time  (in seconds) by MRCD-PCA, IRPCA & ROBPCA for n=100

Contamination 

(%)
p

Running time (in seconds)

MRCD-PCA IRPCA ROBPCA

5

100 1.43447 0.06204 0.08887

200 4.73505 0.16347 0.18677

300 16.08993 0.42292 0.44525

500 49.34740 1.61324 1.86286

10

100 1.70448 0.07008 0.08988

200 5.40792 0.15996 0.22236

300 14.28192 0.4062 0.52776

500 38.26656 1.56276 1.53156

20

100 1.64472 0.08916 0.09996

200 6.31812 0.17592 0.1908

300 14.27124 0.41952 0.429

500 38.9274 1.58388 1.90452

30

100 1.28568 0.08628 0.09432

200 5.87064 0.17976 0.20064

300 15.5622 0.41892 0.4254

500 40.48008 1.57056 1.57224



Figure 1 (a) to (d) : Number of variables vs running time (in secs.) with different levels of contamination 
(n=50)



Figure 1 (a) to (d) : Number of variables vs running time (in secs.) with different levels of contamination 
(n=100)



TWO REAL EXAMPLES TO ILLUSTRATE THE MERIT OR OUR 
METHODS

 Octane data

• This dataset has been used by Hubert et al. (2005) and Boudt et al. (2018).

• It consists of near-infrared (NIR) absorbance spectra with p = 226 wavelengths and n =
39 gasoline samples.

• ROBPCA method declared six HLPs in this dataset, i.e. observation 25,26, 36, 37, 38
and 39 but also detected observation 3 & 7 as HLPs. This is caused by swamping
problem.

• MRCD-PCA method successfully spots the six samples with added alcohol in the
observation 25, 36, 37, 39, 38 and 26.

• IRPCA successfully identified all six observations as HLPs with the smallest
computational time.



Index plot of Octane data set



Index plot of Octane data set



TWO REAL EXAMPLES TO ILLUSTRATE THE MERIT OR OUR 
METHODS

 Craniofacial data

• The data was collected from pediatric subjects attending the Craniofacial Clinic at the
University of Malaya Medical Centre between November 2021 and December 2023.

• The sample consists of 38 individuals with syndromic craniosynostosis (SC), & 24
individuals with normal skulls, providing a comprehensive overview of cranial
variations across affected and normal subjects.

• 92 variables of various measurements on the whole skull were treated as independent
variables.



Index plot of Craniofacial data set



Index plot of Craniofacial data set



Conclusions

 The IRPCA methods demonstrates outstanding performance by able to detect
all high leverage points (HLPs) in a high-dimensional data within a very fast
computing time.

 The existing methods, MRCD-PCA and ROBPCA successfully identify high
leverage points but MRCD-PCA needs longer running time while ROBPCA
suffers from severe swamping problem.

 The Monte Carlo simulations and real dataset validated that our proposed
method, IRPCA successfully detected HLPs with zero masking effect but with a
very small swamping effect for high dimensional data with various sample sizes
and number of independent variables.
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