

COMPARATIVE ANALYSIS OF TIME SERIES CLUSTERING: DYNAMIC TIME WARPING AND EUCLIDEAN DISTANCE MEASURE IN PRICE INDEX OF COMPANIES IN STANDARD AND POOR (S&P) 500 INDEX

Presenter Name : Dr. Norli Anida Binti Abdullah

Cheong Kah Ken¹; Dr Norli Anida Binti Abdullah²; Dr Nur Anisah Binti Mohamed @ Abdul Rahman¹; Dr Arief Gusnanto³

¹ Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Malaysia

² Center for Foundation Studies in Science (PASUM), University of Malaya,

Malaysia

³ School of Mathematics, Faculty of Engineering and Physical Sciences, University of Leeds, United Kingdom (UK)

Introduction

• <u>Time Series Clustering – Objectives:</u>

- To investigate the stock price index data extracted from companies listed in the Standard and Poor (S&P) 500 index using kmeans clustering with DTW distance for centroid updating
- To compare the clustering results obtained with DTW distance against Euclidean Distance to understand the impact on clusters formation
- To interpret the characteristics and temporal patterns within the cluster identified through DTW-based clustering within the companies in S&P 500 index

Illustration of Difference Between Euclidean and DTW Distance

11TH MALAYSIA STATISTICS CONFERENCE

Data Source

- S&P 500 Stock Prices (8 February 2013 8 February 2018)
 - 505 Company Tickers
 - 7 Variables
 - At Most 1259 Observations
- Data Preprocessing
 - Data Transformation
 - Data Smoothing

Price Index at time t,

$$I_t = \frac{P_t}{P_{t-1}} \times 100, t = 2,3, \dots$$

Where $I_1 = 100$

 P_t is the stock's closing price at time t

Simple Moving Average of t days, $\overline{X_t} = \frac{1}{n} \sum_{t=-n+1}^{n} X_t$

Where X_t is the Stock's Price Index at time t

٠

- <u>Clustering Process</u>
 - 1. Apply K-means Clustering to S&P 500 data using
 - DTW-Average,

DTW-Median and

Euclidean distance

- Implementation of Clustering Models
 - K-Means Clustering by Dynamic Time Warping (DTW) Distance
 Measure using Averaged Time Series for Centroid Update
 - General Steps for K-Means Clustering Using DTW:
 - 1. Initialization
 - Randomly Choose K Centroids
 - 2. Assignment
 - Assign Data to Nearest Centroid, Forming K Clusters
 - 3. Centroid Updating
 - Recalculate Centroids
 - Minimizes Cumulative DTW Distance
 - 4. Repeat
 - Repeat Step 2 and 3 Until Minimal Change in Centroids

12

 $\sum d(a_i, b_j)^i$

11Th MALAYSIA STATISTICS CONFERENCE

"Data and Artificial Intelligence: Empowering the Future"

Where A and B are Series A and B respectively $d(a_i, b_j)$ are Distance between Points " a_i " from Series A and Points " b_i " from Series B DTW Distance

Take Averaged Time

Series Within the Clusters

- Clustering Process (continue)
 - 2. Determine the optimal number of clusters using Elbow Plot
 - 3. Evaluate Performance using Rand Index (RI) and Davis-Bouldin Index (DBI)
 - 4. Results Comparison
 - 5. Properties Elucidation

$$DBI = \frac{1}{k} \sum_{i=1}^{k} \max_{i \neq j} \left(\frac{S_i + S_j}{DTW(c_i, c_j)} \right)$$

Where k is the Number of Clusters S_i is the Total Intracluster Distance within Cluster i $DTW(c_i, c_j)$ is the Distance between Centroid i and Centroid j

11Th MALAYSIA STATISTICS CONFERENCE

11Th MALAYSIA STATISTICS CONFERENCE

<u>Clustering Results and Performance Evaluation</u>

• Clustering Results (DTW-Average)

• Sectorial Breakdown of Clusters

- High Investment Return Cluster
 - Health Care Sector
 - Health Insurance Expansion
 - Technological Breakthrough
 - Information Technology (IT) Sector
 - Gaming Boom
 - Growth of Cloud Computing
 - Industrials Sector
 - Aerospace and Defense Sub-Sectors

- Low Investment Return Cluster
 - Energy Sector
 - Oil Price Crash in 2014
 - Oversupply in the market
 - Decision of Organization of the Petroleum Exporting Countries (OPEC)

Conclusion

11Th MALAYSIA STATISTICS CONFERENCE

Conclusion

- Key Findings:
 - DTW Captured Patterns more Effective than Euclidean Distance Measures
 - Companies are Clustered into 3 Main Groups
 - Clustering Result is Meaningful
 - Healthcare, Industrials and IT Companies Provide High Investment Return
- <u>Research Significance:</u>
 - Underscore the Potential of DTW for Financial Analysis
- Future Work Suggestion:
 - Algorithm Optimization (Reduce Computational Time)

Thank you

