
Machine Learning Techniques

to Classify 

Individual’s Home Activities

Presented by 

Ms Chong Kar Yin, Taylor’s University



AGING POPULATION: 

THE CHALLENGE



THE POPULATION IS GETTING OLDER
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DATA CLEANING

& PREPROCESSING

CLASSIFICATION

01
Compare machine learning 

algorithms for classifying 

ADLs using smart home data.

02 Assess the impact of time-related features on 

classification accuracy.
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Cross Validation Test

Evaluation Metrics
• Confusion Matrix 

• Precision | Recall 

• F1 Score

• Matthews Correlation Coefficient   
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▪ Gradient Boosting:

Top performing algorithm

▪ Random Forest & Decision Trees: 

Strong performance on complex activities

▪ Naive Bayes: 

Worst performance, struggled with interdependent data
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▪ Improved accuracy in most models

▪ SVM showed the biggest improvement

▪ Random Forest slightly outperformed Gradient 

Boosting with time features
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▪ Best-recognized activities: Relax, 

Meal Preparation, Sleeping, Eating, 

Work, Bed to Toilet.

▪ Time-related features improved 

recognition of time-specific activities 

like Sleeping and Eating.

▪ Challenges with recognizing activities 

like Wash Dishes and Housekeeping.
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Naive Bayes 

struggled with 

feature 

independence 

assumptions.
Tree-based 

methods excelled 

in handling 

behavioral 

variability.

Time-related 

features offered 

modest 

improvements.
SVM's rigid 

boundaries didn’t 

handle overlapping 

activities well.

01

02

03

04



OBJECTIVE    |    METHODOLOGY    |    ALGORITHM PERFORMANCE    |    FINDINGS    |    FUTURE WORK

✓ Tree-based methods effectively 

classify ADLs in smart homes.

✓ Future research should focus on 

similar activity recognition and 

advanced feature engineering.

✓ Real-world application in Malaysian 

smart homes.
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