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Abstract: Relying solely on stored energy from electric charges in their battery packs,
Battery Electric Vehicles (BEVs) propel their electric motors without the need for
traditional combustion engines. Meeting this growing demand requires electricity utility
providers to enhance electricity generation capabilities and upgrade distribution grids for
BEVs charging stations. In the raw form, the start and stop charging data from BEVs
charging stations is not capable to demonstrate the electricity load demand from BEVs
charging activities. To address this limitation, transforming the data into a continuous
time series format is essential for effective modeling of charging behavior, enabling
trend and seasonality forecasting. Secondary data for this study was sourced from the
My Electric Avenue project in the UK where 209 Nissan Leaf BEVs were leased to
participants and its usage behavior is recorded. Using data from January 1, 2014 to
December 15, 2014, the transformation involves counting simultaneous charging by
augmenting data between start and stop times. A significant correlation exists between
electricity demand from BEV charging and concurrent sessions. The corresponding
Mean Absolute Percentage Error (MAPE) using the LSTM model on observed data
recorded at 1.38% and its Root Mean Squared Error (RMSE) at 0.51. The LSTM model
serves as a validation tool for the transformed time series suitability for forecasting.
Electric utility companies can utilize a similar LSTM model, leveraging localized data,
for forecasting long-term electricity demand from local BEV charging. This model can
integrate into planning tools focused on upgrading electric generation and transmission
facilities.
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1. Introduction:
It is known that road transport is the second largest contributor to CO2 emissions in the
European Union (EU). If no drastic steps are taken to reduce the growth, it could be the
largest contributor of CO2 emissions in the EU by 2050 as highlighted by Krause et al.
(2020). About 25% of global emission comes from vehicle tailpipe according to Teixeira
and Sodre (2018). The transportation sector contributed 16% to the global CO2 emission
(Abdul Latif, 2021).
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The adoption of battery electric vehicles has reached such a high popularity that most
European countries committed to shift away from internal combustion engines (ICE) by
2030 and 2040 time frame (Krause et. al, 2020). Mass adoption of BEV will put stress on
the country’s national electric grid and electric generation since BEV need to be plugged
into the electric grid for charging. Electric utility providers will need to plan for this new
electricity demand created by BEV.

To anticipate and accommodate the burgeoning demand for electricity spurred by
Battery Electric Vehicles (BEVs), electricity utility entities must proactively enhance their
electricity generation and distribution grid network capacities. A vital aspect of this
preparation involves adopting a robust forecasting methodology to rationalize substantial
investments in infrastructure. In this investigation, the Long Short-Term Memory (LSTM)
model is selected to project the electricity demand arising from BEVs during charging,
when they are connected to the electric grid.

The choice of the LSTM model is grounded in its practicality for analyzing time series
data, ensuring a systematic approach to forecasting in the context of BEV charging
activities. Employed as a validation tool, the LSTM model serves to affirm the
appropriateness of the transformed time series data for accurate time series forecasting.
This methodological approach not only aids in forecasting the demand trajectory but
also provides a rational basis for strategic decisions related to infrastructure
development and capacity augmentation by electricity utility companies.

2. Methodology:
The raw form of start-stop battery electric vehicle charging data need to be transformed
from the raw multivariate discrete time series data into univariate continuous time series
data. Then, the final transformed data will be suitable to be used in the LSTM model for
modeling and forecasting electric load demand from BEV during active charging session.

The transformed data is capable to address the simultaneous BEV charging. Refer to
Figure 1 for the transformation step flow chart built using 5 data frames. The first data
frame, Dataframe 1 is the raw data that contains start and stop date of BEV charging
activities. The start and stop date is converted from string data type into datetime data
type. The start date is set as the index of Dataframe 1. Dataframe 2 is additional
transformation steps to the Dataframe 1. Desired date range can be selected easily
while the start date of BEV charging is still the index of Dataframe 2. After selecting new
date range, the index is reset and new dummy key column is added to Dataframe 2.

The third data frame, Dataframe 3 is built from scratch. Date range of this new data
frame need to be identical to the Dataframe 2. The frequency interval of this data frame
also need to match Dataframe 2. New column time is added to Dataframe 3 to track time
from beginning to the end of date range in same frequency as Dataframe 2. New
dummy key column is added to Dataframe 3. Dataframe 4 is result of left merge
Dataframe 2 with Dataframe 3 on key column. The resulting outcome is data on column
key in Dataframe 3 will fill data from start date to end date of BEV charging activities.
New column cnt_charge_events is created to keep track of charging duration for each
charging event.
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The final data frame, Dataframe 5 is result of grouping all values in column time in a
time series sequence. For time value that overlaps between multiple charging events,
the number of overlaps is summed up and stored in column cnt_charge_events. Finally,
the single time flow in minute-frequency interval is set as new index of Dataframe 5.

Figure 1 Flowchart of proposed procedure for start-stop data transformation process.

The Recurrent Neural Network (RNN) is a specialized neural network architecture
tailored for processing sequential data. LSTM network successfully address the
shortcomings of traditional RNNs by incorporating gate control mechanisms that
integrate short-term memory with long-term memory (Hochreiter, 1997). The LSTM
model is chosen to model the feature engineered time series data. The model will then
be used to perform 1-step ahead forecasting.

Figure 5 visualizes a single LSTM cell, its input layer, output layer, and internal hidden
layers. The LSTM cell take input from previous cell state memory (ct-1), previous cell
hidden state (ht-1), and current input data (xt). Internally, the intermediate state of forget
gate (ft), input gate (it), and prior cell state (ćt) is calculated. Output from the LSTM cell
are current cell state (ct), current hidden cell state (ht), and output gate state (ot).

Figure 5: Visualization of single LSTM cell
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The LSTM cell is defined by Eq. 1-6.

𝑓𝑡 = 𝜎𝑔 𝑊𝑓 ∗ 𝑥𝑡 + 𝑈𝑓 ∗ ℎ𝑡−1 + 𝑏𝑓 (1)

𝑖𝑡 = 𝜎𝑔 𝑊𝑖 ∗ 𝑥𝑡 + 𝑈𝑖 ∗ ℎ𝑡−1 + 𝑏𝑖 (2)

𝑜𝑡 = 𝜎𝑔 𝑊𝑜 ∗ 𝑥𝑡 + 𝑈𝑜 ∗ ℎ𝑡−1 + 𝑏𝑜 (3)

�́�𝑡 = 𝜎𝑐 𝑊𝑐 ∗ 𝑥𝑡 + 𝑈𝑐 ∗ ℎ𝑡−1 + 𝑏𝑐 (4)

𝑐𝑡 = 𝑓𝑡 ∙ 𝑐𝑡−1 + 𝑖𝑡 ∙ �́�𝑡 (5)

ℎ𝑡 = 𝑜𝑡 ∙ 𝜎𝑐 𝑐𝑡 (6)

The constants Wf, Wi, Wo, Wc, Uf, Ui, Uo, and Uc are weight matrices. The constants bf, bi,
bo, and bc are biases. Both weight matrices and biases are not time-dependant. The σg

is a sigmoid function defined by Eq. 7, and the σc is tanh hyperbolic tangent function
defined by Eq. 8.

𝜎𝑔 = 1 + 𝑒−𝑥 −1 (7)

𝜎𝑐 =
𝑒2𝑥−1

𝑒2𝑥+1
(8)

The hidden LSTM layer is structured as a sequential single layer, encompassing 125
units of LSTM cells. In the training process, the data was divided into sequences of 60
data points, each associated with a single expected output. The expected output
corresponds to the subsequent data point in the training dataset. Example of a
sequential single layer LSTM network is shown in Figure 6.

Figure 6: Visualization of four units of LSTM cells in sequential single layer configuration

3. Result and Discussion:
Figure 2 and 3 present the raw multivariate discrete data of start and stop charge date
from EVChargeData.csv, sourced from the My Electric Avenue project. The plot in the
main window of Figure 2 shows BEV start charge date for the whole selected date range.
Resolution of the x-axis is in minutes, while the y-axis is count number of BEV that start
charging. The small window on Figure 2 is a 24-hours snippet of the BEV start charge
date. Each spike on the plot represents BEV start charge date (and time) that happened
on each minute interval. It can be observed that multiple BEV start charge event has



4MyStats 2022

count of one with exception of one event where two BEV started charging on the same
minute, thus giving count of two.

The plot in main window of Figure 3 shows BEV stop charge date for the whole selected
date range. Characteristic of x-axis and y-axis on this plot is the same with Figure 2. The
small window in Figure 3 is a 24-hours snippet of the BEV stop charge date. The date
and time range of the snippet window in Figure 3 is identical to the snippet window in
Figure 2. It can be observed also that all BEV stop charge event in the plot has count of
one.

Figure 2: Start charge data sourced from the My Electric Avenue project

Figure 3: Stop charge data sourced from the My Electric Avenue project
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Figure 4: Feature engineered continuous time series data generated from the start and stop
charge data sourced from the My Electric Avenue Project

It is known that charging BEV can take hours to fully charge its batteries. Each BEV that
is actively charging will continuously draw power from power source. As another BEV
starts charging while the first BEV is still charging, the two BEV will draw twice the
power from power source if both charging stations use identical charging equipment.
Taking the BEV start and stop charging data in its raw form does not explain the
scenario of concurrent charging events. Using steps visualized in Figure 1, the outcome
is continuous time series data as plotted in Figure 4. Characteristics of x-axis and y-axis
of the plot in Figure 4 is the same as the plots in Figure 2 and 3. The small snippet
window in Figure 4 has the same date range as the 24-hours snippet as in Figure 2 and
Figure 3. Augmenting data between start and stop date of active BEV charging activities
gives us insight of active concurrent charging activities.

The LSTM model employed in this study is configured for supervised learning. To impart
the behavioral patterns of the transformed data to the LSTM network, each of the STL
decomposed components of the observed data is partitioned into training and testing
sets. Specifically, the training data comprises 80% of the dataset, starting from the initial
entry, while the testing data consists of the remaining subsequent 20% of the dataset,
similar to Koohfar (2023). Based on the observed data, the training dataset contains
452,304 data points, while the testing dataset consists of the remaining 50,256 data
points.

4. Conclusion:
The BEV transformed data is found suitable to be used in time series modeling using
LSTM method. The LSTM method proposed in this study has achieved MAPE value of
1.38% and RMSE value of 0.51, at epoch 20. However, there is room for improvement
in the MAPE result from the residual components, suggesting potential enhancements
for better overall accuracy in predicting BEV charging behavior. Load forecasting spans
various temporal scales, including long-term, mediumterm, short-term, and ultra-short-
term forecasting, each tailored to specific prediction periods. Ultra-short-term load
forecasting (USTLF) is a specialized focus that involves estimating power consumption
within a timeframe ranging from a few minutes to hours ahead. This type of forecasting
is integral for facilitating rational tariff adjustments, ensuring smooth system operation,
and enhancing economic efficiency as highlighted by Tong (2023).
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