

Healthcare Insurance Fraud Detection using Benford's Law

Wei Han YAP, Kee Huong LAI

School of Accounting and Finance, Taylor's Business School, Taylor's University

- **1. INTRODUCTION**
- **2. METHODOLOGY**
- 3. RESULT
- 4. **DISCUSSION**
- 5. CONCLUSION
- **6. REFERENCES**

NTRODUCTION

11Th MALAYSIA STATISTICS CONFERENCE

- An alarming annual loss of USD 308.6 billion due to insurance fraud (Kilroy, 2024)
- Conservative pricing transfers financial burden to policyholders higher premiums (Chen et al., 2020)
- Automated fraud detection technologies machine learning models (Nabrawi & Alanazi, 2023) – sophisticated and computationally expensive

- A straightforward statistical tool
- Applied successfully in forensic accounting (Druica et al., 2018) and electoral fraud detection (Gueron & Pellegrini, 2022)
- Applies exclusively to naturally occurring numbers (insurance claim amounts, stock prices, etc)
- Not applicable to manipulated or pre-assigned numbers (phone numbers, aggregate claim amounts after the policy limit is applied)

INTRODUCTION – Benford's Law – Formula and Distribution

$$P(d) = \log_{10}\left(1 + \frac{1}{d}\right)$$
, where $d = \{1, 2, ..., 9\}$.

METHODOLOGY

11Th MALAYSIA STATISTICS CONFERENCE

METHODOLOGY - Flowchart

1. Data Requisition

- Synthetic dataset obtained from Kaggle
- A dataset with 63,968 observations focusing on annual reimbursement amounts for Medicare
- Research focus on IPAnnualReimbursementAmt, IPGrossClaim, OPAnnualReimbursementAmt, and OPGrossClaim

2. Data Preprocessing

- Utilised both Microsoft Excel and R-programming
- The first digit of the respective inpatient and outpatient reimbursement amount and gross claim were extracted

3. Experiment and Simulation

- The distribution of each category is fitted to Benford's Law distribution.
- Combo charts were generated for data visualization.

4) Performance Metrics

- $Z = \frac{|AP EP| \frac{1}{2N}}{\sqrt{\frac{EP(1 EP)}{N}}}$ Z-test is used to measure how many standard deviations the observed distribution of each respective digit are from Benford's Law distribution.
- $\chi^2 = \sum_{i=1}^n \frac{\left(O_i E_i\right)^2}{E_i} \cdot \text{Chi-squared goodness-of-fit test compares the overall conformity} of the observed distribution to the expected distribution, is affected by$ the number of observations.

$$MAD = \frac{\sum_{i=1}^{k} |AP - EP|}{k}$$

Mean Absolute Deviation (MAD) compares the overall conformity of the observed distribution to Benford's Law distribution, not affected by the number of observations

11" MALAYSIA STATISTICS CONFERENCE

RESULT

11Th MALAYSIA STATISTICS CONFERENCE

RESULT – Inpatient Categories

Digit	Benford'	Inpatient Reimbursement	<i>z</i> -stat	Inpatient Gross Claim	z-stat
1	0.3010	0 3024	0 4212	0.3455	13 7297*
2	0.1761	0.1280	17.7637*	0.1214	20.3182*
3	0.1249	0.1232	0.7501	0.0803	19.0966*
4	0.0969	0.1073	4.9091*	0.0980	0.5256
5	0.0792	0.0948	8.1215*	0.0990	10.3752*
6	0.0669	0.0771	5.7159*	0.0823	8.6848*
7	0.0580	0.0577	0.1366	0.0686	6.4413*
8	0.0512	0.0559	3.0317*	0.0517	0.3400
9	0.0458	0.0536	5.2667*	0.0531	4.9286*
$\chi^2 p$ -value		1.494e-83	$\chi^2 p$ -value	6.662e-216	* Z>1.96
MAD		0.0111	MAD	0.0221	
Interpretation		Acceptable conformity	Interpretation	Non-conformity	

RESULT – Outpatient Categories

Digit	Benford'	Outpatient Roimbursoment	z-stat	Outpatient	z-stat
	Slaw	Reinbursement		Gloss Claim	
1	0.3010	0.3029	0.9958	0.3011	0.0496
2	0.1761	0.1796	2.3193*	0.1870	7.1578*
3	0.1249	0.1317	5.1056*	0.1322	5.5429*
4	0.0969	0.0978	0.7309	0.0984	1.2497
5	0.0792	0.0754	3.4714*	0.0749	3.9737*
6	0.0669	0.0653	1.6151	0.0619	5.0904*
7	0.0580	0.0542	4.0552*	0.0533	5.0172*
8	0.0512	0.0487	2.7934*	0.0475	4.1746*
9	0.0458	0.0444	1.6193	0.0437	2.4504*
$\chi^2 p$ -value		1.442e-11	$\chi^2 p$ -value	1.287e-29	* Z>1.96
MAD		0.00288	MAD	0.00439	
Interpretation		Close conformity	Interpretation	Close	
				conformity	

DISCUSSION

11Th MALAYSIA STATISTICS CONFERENCE

DISCUSSION – Contradictory Results

- Inpatient gross claim raw loss data
- Inpatient reimbursement amount revised amount after deductible
- Intuitively speaking, the raw data would conform to Benford's law
- Contradicting results

DISCUSSION – Excess Power Problem

- Large sample size *p*-values obtained are small, while the test statistics have large values
- Excess power problem encountered by the chi-squared test (Kossovsky, 2021).
- Other statistical tests, such as the MAD, should be used to complement the chi-squared test to provide additional insights

CONCLUSION

11Th MALAYSIA STATISTICS CONFERENCE

CONCLUSION – Concluding Remarks

- Inpatient reimbursement amount conforms to Benford's Law more than inpatient gross claim (raw data), which contradicts Benford's Law.
- Excess power problem faced by chi-square test and z-test

- Lack of accessibility of real-world insurance datasets due to privacy matters.
- Deviations from Benford's Law do not necessarily imply fraudulent cases as Benford's Law only serves as a preliminary statistical tool.
- More advanced tests and algorithms should be employed for further investigation.

- Using simulated datasets (Campo & Antonio, 2023) that are realistic and representative of actual insurance datasets.
- Complementing the results from Benford's Law with more advanced machine learning models to accurately identify fraudulent cases
- To examine insurance datasets that include co-payments

REFERENCES

11Th MALAYSIA STATISTICS CONFERENCE

REFERENCES

- 1. Chen, Z. X., Hohmann, L., Banjara, B., Zhao, Y., Diggs, K., & Westrick, S. C. (2020). Recommendations to protect patients and health care practices from medicare and medicaid fraud. *Journal of the American Pharmacists Association*, *60*(6), e60-e65.
- 2. Nabrawi, E., & Alanazi, A. (2023). Fraud detection in healthcare insurance claims using machine learning. *Risks*, *11*(9), 160.
- 3. Gueron, E., & Pellegrini, J. (2022). Application of Benford–Newcomb law with base change to electoral fraud detection. *Physica A: Statistical Mechanics and its Applications*, 607, 128208.
- 4. Druică, E., Oancea, B., & Vâlsan, C. (2018). Benford's law and the limits of digit analysis. International Journal of Accounting Information Systems, 31, 75-82.
- 5. Gupta, R. A. (2019). Healthcare Provider Fraud Detection Analysis. Retrieved May 1, 2024, from https://www.kaggle.com/datasets/rohitrox/healthcare-provider-fraud-detection-analysis/code
- Nigrini, M. J. (2012). Benford's Law: Applications for forensic accounting, auditing, and fraud detection (Vol. 586). John Wiley & Sons.
- 7. Kossovsky, A. E. (2021). On the mistaken use of the chi-square test in Benford's law. Stats, 4(2), 419-453.
- 8. Campo, B. & Antonio, K. (2023). Insurance fraud network data simulation machine: Generating synthetic fraud network data sets to develop and to evaluate insurance fraud detection strategies. In *Insurance Data Science Conference, Location: London, United Kingdom*.

Thank you

