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INTRODUCTION



INTRODUCTION – Losses due to Fraud

• An alarming annual loss of USD 308.6 billion due to insurance

fraud (Kilroy, 2024)

• Conservative pricing – transfers financial burden to

policyholders – higher premiums (Chen et al., 2020)

• Automated fraud detection technologies – machine learning

models (Nabrawi & Alanazi, 2023) – sophisticated and

computationally expensive



INTRODUCTION – Benford’s Law

• A straightforward statistical tool

• Applied successfully in forensic accounting (Druica et al.,

2018) and electoral fraud detection (Gueron & Pellegrini, 2022)

• Applies exclusively to naturally occurring numbers

(insurance claim amounts, stock prices, etc)

• Not applicable to manipulated or pre-assigned numbers

(phone numbers, aggregate claim amounts after the policy

limit is applied)



INTRODUCTION – Benford’s Law – Formula and Distribution
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METHODOLOGY



METHODOLOGY - Flowchart

1. Data Requisition

• Synthetic dataset obtained from Kaggle

• A dataset with 63,968 observations focusing on annual reimbursement 

amounts for Medicare

• Research focus on IPAnnualReimbursementAmt, IPGrossClaim, 

OPAnnualReimbursementAmt, and OPGrossClaim

2. Data Preprocessing

• Utilised both Microsoft Excel and R-programming

• The first digit of the respective inpatient and outpatient

reimbursement amount and gross claim were extracted

3. Experiment and Simulation

• The distribution of each category is fitted to Benford’s Law distribution.

• Combo charts were generated for data visualization.



METHODOLOGY - Flowchart

4) Performance Metrics

• Z-test is used to measure how many standard deviations the

observed distribution of each respective digit are from Benford’s Law

distribution.

• Chi-squared goodness-of-fit test compares the overall conformity

of the observed distribution to the expected distribution, is affected by

the number of observations.

• Mean Absolute Deviation (MAD) compares the overall conformity of

the observed distribution to Benford’s Law distribution, not affected

by the number of observations
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RESULT



RESULT – Comparison of All Categories



RESULT – Inpatient Categories



RESULT – Outpatient Categories



DISCUSSION



DISCUSSION – Contradictory Results

• Inpatient gross claim – raw loss data

• Inpatient reimbursement amount – revised amount after

deductible

• Intuitively speaking, the raw data would conform to Benford’s

law

• Contradicting results



DISCUSSION – Excess Power Problem

• Large sample size – p-values obtained are small, while the

test statistics have large values

• Excess power problem encountered by the chi-squared test

(Kossovsky, 2021).

• Other statistical tests, such as the MAD, should be used to

complement the chi-squared test to provide additional

insights



CONCLUSION



CONCLUSION – Concluding Remarks

• Inpatient reimbursement amount conforms to Benford’s Law 

more than inpatient gross claim (raw data), which contradicts 

Benford’s Law.

• Excess power problem faced by chi-square test and z-test



CONCLUSION – Limitations

• Lack of accessibility of real-world insurance datasets due 

to privacy matters.

• Deviations from Benford’s Law do not necessarily imply 

fraudulent cases as Benford’s Law only serves as a 

preliminary statistical tool.

• More advanced tests and algorithms should be employed 

for further investigation.



CONCLUSION –Future Works

• Using simulated datasets (Campo & Antonio, 2023) that are 

realistic and representative of actual insurance datasets.

• Complementing the results from Benford’s Law with more 

advanced machine learning models to accurately identify 

fraudulent cases

• To examine insurance datasets that include co-payments
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